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Abstract

A concise process for the stereoselective synthesis of chiral cis-3-alkoxy-2-carbomethoxy medium-ring oxacycles from (R)-3-(3-
butenyl)-4-propynoyloxazolidin-2-one (1) was developed. The process includes five major steps: (i) hetero-Michael reaction between
an alcohol and 1, (ii) stereoselective reduction of the resulting ketone, featuring stereochemical assistance of the neighboring oxazoli-
din-2-one group, (iii) esterification with an alkoxy acetic acid, (iv) chirality-transferring Ireland–Claisen rearrangement of the resulting
3-alkoxyallyl glycolate ester to provide a syn-2,3-dialkoxy carboxylate ester, and (v) relay ring-closing olefin metathesis to form a
medium-ring ether along with the simultaneous removal of the oxazolidin-2-one moiety.
� 2007 Elsevier Ltd. All rights reserved.
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Medium-ring ethers, often occurring in potent bioactive
natural products,1 have attracted much attention among
synthetic chemists due to the challenges in the stereoselective
construction of the medium-rings and ether systems with
adjacent oxygen-functionalities. To date, various synthetic
methodologies have been reported by numerous research
groups,2 including our diastereoselective synthesis of race-
mic cis- and trans-3-alkoxy-2-carbomethoxy eight-mem-
bered oxacycles from 3-alkoxyallyl glycolates via Ireland–
Claisen rearrangement3 and ring-closing olefin metathesis
(RCM).4,5 As an extension of our methodology toward
the construction of optically active cyclic ethers, the concise
stereoselective synthesis of (2S,3R)-cis-3-alkoxy-2-carbo-
methoxy medium-ring oxacycles (2) from (R)-3-(3-butenyl)-
4-propynoyloxazolidin-2-one (1) is described herein.
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Our asymmetric synthesis of medium-ring ethers 2 from
chiral E-3-alkoxyallyl alcohol 5 is shown in Scheme 1.
Based on our previously reported synthetic methodology,
5 was transformed into glycolate ester 4, which was
subjected to a chirality-transferring Ireland–Claisen rear-
rangement to 3, then cyclized to 2 via RCM. Because the
preparation of 5 requires the stereoselective construction
of an E-alkoxy alkene with a hydroxymethyne group, dia-
stereoselective reduction of 6 to 5 was carried out with the
assistance of a 3-(3-butenyl)oxazolidin-2-one-4-yl moiety
(R1) (as a chiral auxiliary),6 following the E-selective
hetero-Michael reaction of an alcohol to 1, which was
prepared from L-serine. Furthermore, the chiral auxiliary
can be removed, as bicyclic 8, during the final cyclization
of 3 to 2 by a relay ring-closing olefin metathesis (RRCM)
process7 via intermediates 7 and 9.

First, as shown in Scheme 2, chiral acetylene ketone 18

was prepared from known oxazolidinone 109,10 (available
from L-serine) via Swern oxidation,11 followed by the
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addition of ethynylmagnesium bromide and IBX oxida-
tion12 (overall 60%).

Next, to establish the geometry and stereocenter for the
subsequent Ireland–Claisen rearrangement step, the
hetero-Michael reaction between acetylene ketone 1 and
an alcohol, followed by diastereoselective reduction was
investigated (Scheme 3). In the presence of a catalytic
amount of DMAP, the reaction between 1 and benzyl alco-
hol proceeded smoothly to selectively give an E-alkenyl
ketone (75%),13 which was reduced with L-Selectride to
afford alcohol 11 as a single stereoisomer (82%).6

The second half of our synthetic route is shown in
Scheme 4. Using EDCI/DMAP, alcohol 11 was esterified
with alkenyloxyacetic acids 12a–c to give corresponding
esters 13a–c, which are unstable under typical purification
conditions but easily separable from impurities by simple
extractive work up, and therefore, used without further
purification. Upon deprotonation of esters 13a–c using
KHMDS in THF at �78 �C in the presence of TMSCl,
the resulting ketene silyl acetals stereoselectively rearranged
to the corresponding carboxylic acids while warming to
N
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ambient temperature. Treatment of each carboxylic acid
with TMSCHN2 produced a stereochemically homo-
geneous methyl (E)-syn-2,3-dialkoxy-4-pentenoate (14a:
55%, 14b: 56%, 14c: 60%, from 11). Trienes 14a–c were then
subjected to RRCM using a second-generation Grubbs’
catalyst14 to give the corresponding six-, seven-, and
eight-membered cyclic ethers 15a–c15 (89%, 57%, and
58%, respectively) along with 8 (72–100%). The relative
stereochemistry of 15a–c was confirmed by the relatively
small JH2–H3 values (15a: 2.8 Hz, 15b: 1.8 Hz, 15c: 3.3 Hz)
and the presence of NOE between H2 and H3 in NMR
analysis. To prove the efficiency of the chirality-transfer
process from 1 to the oxocycle products, the absolute
stereochemistry of 15a was investigated as a representative
example and determined to be a 2S,3R-configuration16 with
the same optical purity (>93% ee)17 as that of 10.18
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Then, we examined RCM of 3-butyloxazolidin-2-on-4-yl
derivative 16 instead of 14a as a control experiment to clar-
ify the efficiency of the N-(3-butenyl) group in RRCM pro-
cess. As a result, a significant decrease in the yield of 15a

(�17%) was observed under identical cyclization condi-
tions (Scheme 5).19 This indicates that, during the initial
step of RRCM, the metathesis of the N-(3-butenyl) group
is required for high yields of the cyclic ethers.

In summary, a concise process for the stereoselective
synthesis of chiral cis-3-alkoxy-2-carbomethoxy medium-
ring oxacycles from (R)-3-(3-butenyl)-4-propynoyloxazol-
idin-2-one (1) was developed. The process includes major
five steps: (i) hetero-Michael reaction between an alcohol
and 1, (ii) stereoselective reduction of the resulting ketone
6, featuring the stereochemical assistance of the neigh-
boring oxazolidin-2-one group, (iii) esterification with an
alkoxy acetic acid, (iv) chirality-transferring Ireland–Clais-
en rearrangement of the resulting 3-alkoxyallyl glycolate
ester 4 to provide syn-2,3-dialkoxy carboxylate ester 3,
and (v) relay ring-closing olefin metathesis to produce med-
ium-ring ether 2 along with the simultaneous removal of
the oxazolidin-2-one moiety. Further studies including
the reutilization of 8 and the application of the process to
natural product synthesis are currently underway in our
laboratories.
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